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We study the properties of random graphs where for each vertex aneighborhoodhas been previously
defined. The probability of an edge joining two vertices depends on whether the vertices are neighbors or not,
as happens in small-world graphs(SWG’s). But we consider the case where the average degree of each node
is of order of the size of the graph(unlike SWG’s, which are sparse). This allows us to calculate the mean
distance and clustering, which are qualitatively similar(although not in such a dramatic scale range) to the case
of SWG’s. We also obtain analytically the distribution of eigenvalues of the corresponding adjacency matrices.
This distribution is discrete for large eigenvalues and continuous for small eigenvalues. The continuous part of
the distribution follows a semicircle law, whose width is proportional to the “disorder” of the graph, whereas
the discrete part is simply a rescaling of the spectrum of the substrate. We apply our results to the calculation
of the mixing rate and the synchronizability threshold.
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I. INTRODUCTION

Many natural and artificial systems are composed of a
large number of identical agents that interact. Examples of
this kind of system are numerous and widespread: collabo-
rators in physics, neural networks, computer programs(con-
sidered as a system of interacting subroutines), the World
Wide Web, movie actors, etc.

The interactions, however, need not be identical and can
vary in strength and range. A simplified analysis of such a
system can take into account only the pattern of interactions,
abstracting everything else. What is left is usually called a
networkand is mathematically represented by agraph(along
this article both terms will be used interchangeably.)

A graph is composed ofvertices(associated to the agents)
connected byedges. Agents only interact with other agents if
there is an edge joining the corresponding vertices, and the
strength of the interaction is given by theweightof the edge.
The interactions between graph theory and physical science,
particularly physics, has been very fruitful[1].

In 1959 Erdös and Renyi[2] started a whole new branch
of graph theory by creating(and extensively studying) the
concept of random graphs. These are graphs where each
edge has a defined probability of being present, and this
probability is independent of all other edges. They seem par-
ticularly well suited for the study of systems for which there
is little information about the range of the interactions. In
these cases it seems natural to assign independent and equal
probabilities to the different connections.

The average distance of a graph is defined as the average
of the length(i.e., the number of vertices) of the smallest
path joining two edges. The clustering coefficient gives the
average number of connections present between neighbors of
a vertex, divided by the number of possible connections
within the neighborhood of the vertex. In their groundbreak-
ing article of 1998, Watts and Strogatz(WS) [3] showed that

most real networks display a very short average distance
combined with large values of the clustering coefficient. But
random graphs do not fulfill these requirements because,
even though the average distance is short, the clustering co-
efficient turns out to be rather small. Thus they proposed a
new graph model, the small world graph(SWG). To build a
SWG one starts with a regular andsparsesubstrate graph
(with large clustering but also with large average distance)
and then rewires some edges with a probabilityp, thus cre-
ating shortcuts. It was shown that a small number of short-
cuts is enough to significantly lower the average distance
while leaving the clustering coefficient almost unchanged.

Since their proposal, the properties of SWG’s have been
intensively studied with numerical as well as analytical
methods. Even though some numerical analyses have been
performed[4], one of the properties that still resists analyti-
cal treatment is the spectrum of the adjacency matrix of
SWG’s.

The constraint of sparsity is justified by the fact that many
networks in nature display this characteristic. But one can
also find systems where the pattern of connections of every
node spans a significant portion of the whole graph(i.e., the
degree of the nodes is of the same order as the size of the
network). Some examples of this are the network of train
routes in India[5], the full reaction graphs of the metabolic
network of E. coli [6,7], and the network of the interacting
units of the computer programMOZILLA [8].

In this article we study the properties of graphs for which
the sparsity constraint has been dropped. This allows us to
calculate analytically the average distance and the clustering
coefficient, as well as the whole eigenvalue distribution of
the corresponding adjacency matrices. The spectra of these
matrices can be considered as limiting cases of the ones of
sparse SWN’s.

The values of the different properties calculated in this
article are onlyaveragesover a certain family of graphs
(defined in the next section). Nevertheless, simulations sup-
port the idea that the properties of almost every graph of this
family should tend, in probability, to the average values
found.*Electronic mail: srisau@if.ufrgs.br
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In Sec. II we define the model and relate it to the Watts-
Strogatz prescription. In Sec. III we calculate the average
distance and the clustering coefficient. In Sec. IV we obtain
the spectrum of the corresponding adjacency matrices and
compare it to the spectrum of sparse graphs. A couple of
applications of the results obtained are presented in Sec. V.
In Sec. VI some conclusions are drawn.

II. MODEL

A graph is a pair of setssV,Ed, whereV hasN elements
(or vertices) and E#V2 has M elements(or edges). Two
verticesv1 andv2 are connected ifsv1,v2dPE.

WS [3] proposed a graph model capable of interpolating
between order and randomness. The graphs in this model are
built by taking asubstrate, which is a graph displaying some
regularity, and randomlyrewiring some of its edges, by
keeping fixed one end of some edges and redirecting the
other end to a different vertex at random, but following some
rule. Let us consider, for example, the unidimensional case,
where each vertex in a ring is connected tok/2 vertices to
the left andk/2 vertices to the right. The process begins by
traveling clockwise on the ring and, for each vertex rewiring,
with probability p, the connection that joins it with its first
neighbor to the right. Once the circle is completed, a new
round is made where now the connection rewired is the one
to the second neighbor to the right. The process ends after
k/2 rounds(becausek/2 is the number of neighbors to the
right). A similar process can be implemented for a higher-
dimensional substrate. The graph obtained is called a SWG.

In our model of dense partially random graphs(DPRG’s),
we only consider hypercubic lattices as substrates, with the
hope that for other substrates things will not be very differ-
ent, as is the case for sparse SWG[9]. In these lattices
V,Rd and each dimension has a different connectivity pa-
rameterki, which means that each node is connected to a
hypercube of k=pi=1

d ki −1 nodes. This defines a
k-neighborhood for each vertex. As opposed to the usual
constraint of considering sparse networks, here we are con-
cerned only withdensegraphs—i.e., graphs where each ver-
tex is connected tok=OsNd other vertices. Notice that, to
have the same number of neighbors for all nodes, we are
considering periodical boundary conditions for the lattices.
Thus, the one-dimensional lattice is formed by points on a
ring, the two-dimensional lattice by points on a torus, etc.

We randomize the graph in the following way: each edge
in everyk-neighborhood is deleted with a probability 1−p1
and vertices that do not belong to the samek-neighborhood
are joined with probabilityp2. This is equivalent to saying
that, on an empty graph, each vertex is joined by ashort link
with probabilityp1 to every vertex in itsk-neighborhood and
with probability p2 to those outside it, by along link or
shortcut. A graph generated with this prescription is called
Gp1p2

sgd, with g=k/N. The family of all such graphs, forp1,
p2, andg fixed, is calledGp1p2

sgd. With p1=1 andp2=0 one
obtains the ordered substrate, whereas forp1=p2=k/N one
obtains a random graph[10].

Notice that each vertex has a different number of connec-
tions, whose average number iskp1+sN−1−kdp2,Nfgp1

+s1−gdp2g. But in the limit treated in this article, of large
values ofN, the deviations from this average value are ex-
ponentially small. To interpolate with only one parameter
between a fully ordered and a fully random graph, we fix this
average value by requiring thatgp1+s1−gdp2=g (along the
paper, though, results will be displayed for generalp1 andp2,
unless otherwise stated). Notice that in this case the average
number of connections of each vertex isk. Choosingp1 as
the preferred parameter, a graph satisfying the relationship
shown above is calledGp1

sgd and the family of graphs with
p1 andg fixed is calledGp1

sgd. As mentioned, forp1=g the
family Gp1

[10] of completely random graphs is obtained.
In our model the number of shortcuts isp2N, for largeN.

To be able to compare the graphs inGp1
sgd with SWG’s, it is

necessary to know the number of shortcuts of the graphs
generated with the WS prescription. In the sparse case, it is
known that this number is,pkN/2. This comes from the
fact that the sparsity of the network ensures that when a link
is selected, the probability that it will be rewired to a vertex
inside the samek-neighborhood is,1/N. But if the network
is dense, this probability becomes nonvanishing. The follow-
ing procedure provides a good approximation to the number
of shortcuts.

Instead of disconnect and rewire the links sequentially
in each round, let us assume that in each roundpN short
edges are deletedat onceand thenpN randomedges are
added, which can be short or long. The process begins with
only the S=kN/2 short edges present in the graph. We call
St the number of short edges after roundt andLt the number
of long edges. Notice that after deletingpN short edges,
the probability that one of the random edges added is short
is the quotient between the number of available short edges
and the number of total available edges:spN+S−Std / sL+S
−St−Lt+pNd=spN+S−Std / sL+pNd, where L=NsN−1d /2
−S. We are using the fact that the number of edges is con-
servedsSt+Lt=Sd. Using this, the evolution equations for
large enoughN can be obtained:

St+1 = St − pN+ pN
pN+ S− St

L + pN
, s1d

Lt+1 = S− St+1. s2d

The second summand in Eq.(1) corresponds to the edges
deleted and the third to the fraction of edges added that are
short. This formula can be iterated to obtain

St+1 = S− L + LS L

L + pN
Dt+1

. s3d

After t=k/2 rounds and in the limit of largek andN such
that g=k/N, we obtain

p1 = Sk/S, 1 −
1 − g

g
F1 − expS−

gp

1 − g
DG , s4d

p2 = Lk/L , 1 − expS−
gp

1 − g
D . s5d
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Figure 1 shows that the agreement with the real number of
shortcuts for dense SWG’s is very good. Thus, in what fol-
lows, to translate the results of our model to dense small-
world graphs, it suffices to takep2 and invert Eq.(5) to
obtain the correspondingp. Notice that for values ofp close
to 1 there is some “overshooting,” as the resulting SWG’s
have more shortcuts than the corresponding random graphs
(i.e., p2.g).

III. TOPOLOGICAL PROPERTIES

A. Average distance

For random graphs with a numberOsN2d of edges, it is
known that the diameter(i.e., the largest distance between
any two nodes) is equal to 2, for large values ofN. This
means that from any vertex only 1 or 2 steps are needed to
reach any other vertex. This in turn implies that the average
distance in such a graph tends to 2−p. For a general graph it
is known [11] that 2−p, with p=2M /NsN+1d, is a lower
bound to the average distance. It is interesting to notice that
this bound is achieved by some graphs(stars, for example).
Random graphs, on the other hand, only achieve it in the
limit of infinite N. In our model this implies that the average

distance satisfiesd̄ù2−p1g−p2s1−gd.
The graphs inGp1p2

sgd can be generated as the union of
two random graphs. One of them is simply a completely
random graph with edge probabilityp2, calledGp2

. For the
other, the probability that an edge is present is 0 if it is a long
edge andp=sp1−p2d / s1−p2d if it is a short edge. This union
results in a graph equivalent to the one obtained by adding a

numberNa of edges toGp2
, such thatN̄a=s1−p2dpg. Now

every one of these additional edges has the effect of decreas-
ing the average distance of the graph by at leastM−1. Thus,
averaging over all graphs inGp1p2

sgd, the mean average dis-

tance must satisfyd̄ø2−p2−gps1−p2d=2−p1g−p2s1−gd.
This, together with the upper bound, implies that, in mean,

d̄=2−p1g−p2s1−gd for largeN. The fact that this value is a
lower bound for general graphs ensures that, for large values
of N, almost every graph has an average distance equal to the
mean.

Notice that for graphs inGp1
sgd, in the infinite-N limit, the

average distance forp1,1 is only a function ofg: d̄=2−g.
For p1=1 and p2=0, the graph is circulant, and it is not
difficult to see that the average length iss1+gd /2g [9]. In
Fig. 2 it can be seen that for finite but large values ofN,
the average distance falls very rapidly with the number of
shortcuts.

B. Clustering coefficient

The average distance can be thought of as aglobal prop-
erty of a graph: it gives an idea of how far apart is any vertex
from any other. Theclustering coefficientprovides a different
kind of information: it is a measure of how locally connected
is the graph. It is obtained by calculating, for every vertex of
the graph, the number of links joining points of its neighbor-
hood divided by the total number of possible links in the
neighborhood and taking its average over all vertices. This
gives the probability that two neighbors of a vertex are con-
nected to each other. It can be shown[12] that this is equiva-
lent to calculating the total number of triangles in the graph,
divided by the total number of paths of length 2(hereafter
called 2-paths).

Instead of calculating this number for every graph and
then averaging over the ensemble, we calculate an “an-
nealed” version of it[13]: we take the average of the number
of triangles and divide it by the average number of 2-paths.
For large values ofN the agreement with the numerical val-
ues turns out to be very good(see Fig. 2).

To calculate the number of 2-paths, one has to find the
number of 2-paths for every matrix, weigh it with the prob-
ability of that matrix, and then sum over all possible graphs.
An equivalent way of doing this is to sum over all possible
paths, with a weight given byp1

i p2
2−i, wherei is the number

of long links in the path.
In the limit of infinite N all vertices are equivalent and

it is enough to consider all the paths beginning from a fixed
vertex and then multiply byN. To count these paths,
one needs to know the size of the intersection of the

FIG. 1. Fraction of shortcuts as a function of the rewiring
probability p. The symbols are averages taken on 30 matrices with
N=6001. The lines are the theoretical predictions. Error bars are
smaller than the symbols.

FIG. 2. Average random distance and clustering coefficient
for graphsGp1

sgd, scaled by their maximum and minimum values.
The symbols are averages taken on 30 matrices withN=6001 and
g=0.1. The line is the theoretical prediction for the average dis-
tance. Error bars are smaller than the symbols.
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k-neighborhoods of two points. Ifg,2−d, this intersection is
a connected region and the calculation of its size is very
simple. We analyze only this case, because one is usually
interested in low dimensions. For bigger values ofg the cal-
culations are straightforward but much more cumbersome.

Assuming the fixed vertex located at the origin and its
other end at a positionxW PZd, the size of the intersection of
the twok-neighborhoods is

IsxWd =5 p
i=1

d

I isxWd, xW P Gks0d,

p
i=1

d

I isxWd − 2, xW P G2ks0d − Gks0d,

0, xW P G2ks0d,
6 s6d

whereGks0d is the set of nodes that form thek-neighborhood
of the origin and

I isxWd = 2ki − uxiu + 1. s7d

Using this, we obtain that the total number of 2-paths is,
to first order inN,

Np = o
xWPG

PsxWdhp1
2IsxWd + 2p1p2fuGku − IsxWdg

+ p2
2fN − 2uGku + IsxWdgj, s8d

with PsxWd=1. The first term in the curly brackets counts the
number of paths with two short edges, the second counts the
paths with one short and one long edge, and the third counts
those paths with two long edges. To calculate the number of
triangles one proceeds in exactly the same way, but it must
now be assumed that the endpoints of the paths are con-
nected by an edge. Thus, the number of triangles is given by
Eq. (8) usingPsxWd=1−p1 for xW PGks0d andPsxWd=1−p2 for
xW PV−Gks0d. After some algebra the clustering coefficient
obtained is

C =
gd

2sp1 − p2d3fs3/4dd − gdg + fsp1 − p2dgd + p2g3

fsp1 − p2dgd + p2g2 , s9d

with

gd = p
i=1

d

gi . s10d

In the case of a graphGp1
sgd the clustering coefficient

simplifies to

C = sp1 − p2d3fs3/4dd − gdg + gd. s11d

A comparison with data obtained from graphs with 6001
vertices can be seen in Fig. 2. Theory and data only differ
where 1−p1.sgNd−1, where our approximations do not
hold.

IV. SPECTRUM OF THE GRAPH

For a graph with no loops and with no multiple edges, as
those treated in this article, the adjacency matrixA is a 0-1

matrix whereAij =1 if there is an edge connecting verticesi
and j , and 0 otherwise. Diagonal elements are set to 0. The
eigenvalues ofA provide a lot of information about the struc-
ture of the graph(see Ref.[14]). For example, if the graph is
regular and its eigenvalue distribution is symmetric, then the
graph is bipartite. Eigenvalues also provide useful bounds to
quantities as different as the diameter of a graph[15] and the
mixing rate[16] of random walks. In the following section
we summarize some results for the spectrum of circulant
graphs which will be useful in our determination of the spec-
trum of DPRG’s.

A. Circulant graphs

The family of circulant graphs is one of the few for which
all the eigenvalues and eigenvectors can be calculated ana-
lytically [17]. The adjacency matrix of such a graph is a
circulant matrix, where rowi is simply the first row shifted
i places to the right. In our case, the adjacency matrices of
the graphs withp1=1 andp2=0 are circulant. They are sym-
metric matrices with null diagonal elements, satisfying, for
d=1 and j . i, Aij =1 for j − i øk/2 and 0 otherwise.

The eigenvectors of these matrices areN vectors
vW j =s1,r j ,r j

2, . . . ,r j
N−1d for 0ø j øN−1, with r j

=exps2p j /Nd. Interestingly, all circulant matrices have the
same eigenvectors. This is not the case for the eigenvalues,
which satisfyl j

c=oi=1
N Ajir j

i−1. In our case, this gives

l j
c = r j

−sk/2+1do
i=1

N

eipki/N = 2cosSp jsk/2 + 1d
N

Dsinsp jk/2Nd
sinsp j /Nd

.

s12d

Except for the first one, the Perron-Frobenius eigenvalue
l0

c=k, all the other eigenvalues satisfyl j
c=lN−j (we consider

only odd values ofN). Thus, there aresN−1d /2 eigenvalues
with multiplicity equal to 2. Forj !N we have

l j
c

N
=

sinsp jgd
p j

− 2
sin2sp jg/2d

N
−

p j sinsp jgd
3N2 + OS j3

N4D .

s13d

For j =OsNd, it can be seen from Eq.(12) that l j
c=Os1d.

For d.1 our substrates are reticles where the range of
connection of each node depends on the spatial directioni,
through a variableki. The adjacency matrices for these
graphs are simply the Kronecker product(or tensor product)
of the correspondingN1/d3N1/d matrices for each direction:
A=Ask1d ^ Ask2d ^ . . . ^ AskNd. The resulting matrix is circu-
lant and has the nice property that its eigenvalues are

l j1j2. . .jd
c = p

i=1

d

l j i
c for 1 ø j i ø N, s14d

where thel j i
c ’s are given by Eq.(12).

B. Dense partially random graphs

The momentsMj of an N3N matrix A are defined by

Mj = N−1TrsAjd = N−1o
i=0

N

li
j . s15d
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The j th power of an adjacency matrix gives information
about all the possible paths of lengthj in the associated
graph. More specifically,sAjdik is the number ofj-paths that
connect verticesi andk. Thus, the trace of thej th power ofA
is the total number of closed paths, calledcycles, of length j .

If, for an ensemble of matrices, the calculation of the
average number of cycles can be performed for every length,
by using the averaged version of Eq.(15) it is possible to
obtain the average distribution of eigenvalues. This is the
route taken by Wigner[18] in his famous derivation of the
semicircle law for random matrices. His work was after-
wards extended[19] to prove that for large matrices the dis-
tribution of eigenvalues ofalmost everymatrix of the en-
semble tends to the semicircle. In Ref.[20] the same method
was used to calculate the moments of random 0-1 matrices.

In both these works and in many others, all the cycles are
characterized as sequences of vertices. For each sequence of
length j the statistical weight is the same, as all the edges in
the graph have the same probability of being present.

In our model this is different because short and long links
have different probabilities. Therefore, in our case it is better
to characterize each cycle as a succession ofdistances. We
begin by analyzing the unidimensional case, and afterwards
we indicate the modifications necessary to extend the results
to higher dimensions.

On a ring, vertices can be consecutively labeled with
numbers from 1 toN by going round the circle. When stand-
ing on a vertex, a walker can only make a step to the right or
to the left. The distance between verticesi and j is defined as
dij =minsui − j u ,N− ui − j ud. Intuitively, it is the shortest number
of consecutive vertices, including the end vertex, that a
walker must traverse to go fromi to j . To define a direction
we say that if a walker, using an existing link, goes from
vertex i to vertex j such thatsi − jd mod Nø sN−1d /2, then
he has made a step to theright, covering a distancedij .
Otherwise, we say that he has traveled to the left, covering a
distancedij . Thus, aj-path can be defined by a succession of
j distances. The total distance traveled is the sum of the
signed distances.

If the path is a closed one—i.e., a cycle—the total signed
distance must be equal tomN, because the cycle can contain
m complete rounds of the circle. In a cycle traversingi long
edges, called aji -cycle, the number of complete rounds will
be bounded bymmax= bs j − idg /2+isN+1d / s2Ndc, where bxc
gives the largest integer smaller than or equal tox. Pji is
defined as the number ofji -cycles for a fixed position in the
cycle of thei long links. Because the probabilities for each
edge are independent,Pji does not depend on the actual po-
sitions of the long links. As the probability of aji -cycle is
p1

j−ip2
i , the average overGp1p2

sgd of the j th moment is

M̄ j = o
i=0

j S j

i
Dp1

j−ip2
i P̄ji . s16d

As explained in the Introduction, all the quantities calcu-
lated in this article are averages. Thus, hereafter we drop the
overlines to avoid overloading the notation.

Let us calldl the distance traveled in thelth step. To long
links there correspond signed distances satisfyingk, udlu

øN/2. For short links, the corresponding distances satisfy

1ø udluøk. Thus,Pji is the number of solutionsdW PZ j of the
problem

o
l=1

j

dl = mN for umu , mmax,

1 ø udlu ø k/2 if 1 ø l ø i ,

k/2 , udlu ø sN − 1d/2 if i , l ø j . s17d

Using the principle of inclusion and exclusion[21], Pji
can be written as

Pji = o
l=0

i

s− 1di−lS i

l
DP̃jl , s18d

whereP̃jl is the number of solutions to the simpler problem

o
l=1

j

dl = mN for umu , mmax,

1 ø udlu ø k/2 if 1 ø l ø i ,

1 , udlu ø sN − 1d/2 if i , l ø j . s19d

P̃ji corresponds to the number of cycles wherej − i fixed
steps use short links, whereas the other steps can use either

long or short links. It is not difficult to see thatP̃ji is of order
Nj−1 (as the path is closed, onlyj −1 steps may be freely
chosen). Notice thatdl cannot be zero because loops are not
allowed. But the presence of loops only adds toPji terms of
order jNj−2. As we are only interested in the dominating
term, we include the loop terms, that allow for simpler cal-
culations. Using this and rescaling the distances, the problem
of Eq. (19) can be rewritten as the number of solutions of

o
l=1

j

dl = isk/2 + 1d + s j − idsN + 1d/2 + mN for umu , mmax,

1 ø dl ø k + 1 if 1 ø l ø i ,

1 ø dl ø N if i , l ø j . s20d

Using again the principle of inclusion and exclusion, we
get

P̃ji = o
m=−mmax

mmax

o
l=0

j

s− 1dl o
p=0

minsl,j−id S j − i

p
D

3S i

l − p
D ·SNfNsp,l,md + j − 1

j − 1
DQ„fNsp,l,md…,

s21d

whereQsxd is the Heaviside(or step) function [Qsxd=1 for
x.0 andQsxd=0 otherwise] and
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fNsp,l,md =
i

2
− m+ p − l + gS j − i

2
− pD −

p + i/2

N
.

s22d

As we are only interested in the dominant terms ofP̃ij , we
develop it in powers ofN to get

P̃ji = Nj−1 o
m=−mmax

mmax

o
l=0

j

s− 1dl o
p=0

minsl,j−id S j − i

p
DS i

l − p
D

3F f`
j−1

s j − 1d!
+ N−1 f`

j−2

s j − 2d! S j − i

2
− pD + OsN−2dGQsf`d,

s23d

where

f` = f`sp,l,vd =
i

2
− m+ p − l + gS j − i

2
− pD . s24d

For the first-order term of Eq.(23), the sums can be per-
formed (see the Appendix) to obtain the simple result

P̃ji , Nj−1g j−i for 1 ø i ø j . s25d

For P̃j0 there is not such a simple expression. On the other

hand,P̃j0=Pj0. Thus,P̃j0 is the number ofj-cycles of a graph
with only short links—that is, a circulant graph. Thus, it can
be written as

P̃j0 = Pj0 = o
l=0

N−1

ll
j , s26d

where thel’s are the eigenvalues of a circulant matrix, given
by Eq. (12).

Using all this, the number ofji -cycles can be calculated,
giving

Pji = s− 1disPj0 − Nj−1g jd + Nj−1g j−is1 − gdi . s27d

Using this and Eq.(16), we obtain, for the first order of
the moments of a dense partially random matrix,

Mj = sPj0 − g jNj−1dsp1 − p2d j + g*
j Nj−1 for j ù 3, s28d

whereg* =p1g+p2s1−gd is the average degree of a vertex.
The spectrum of eigenvalues that generates the moments
corresponding to Eq.(28), for all values of j (i.e., not only
for j ù3), satisfiesl1/N→g* and l j /N→ sp1−p2dl j

c/N for
j ù1. Notice that this would imply that the whole spectrum
is only a rescaling of the spectrum of the substrate(only the
first eigenvalue is scaling differently). But the problem is
that, because of the symmetry of the matrices, the second
moment is, to first order,M2=Ng* , clearly different to what
would be obtained by settingj =2 in Eq. (28) (Mj=2=Nfsg
−g2dsp1−p2d2+g*g). This means that not all the eigenvalues
can tend to the values mentioned above.

On the other hand, the fact thatMj =OsNj−1d implies [see
Eq. (15)] that every eigenvalue that satisfiesulu=OsNd must
tend to sp1−p2dlc. And from Eq. (13) it can be seen that
the number of such eigenvalues diverges withN. But the
number of eigenvalues thatdo not tend tolc, which satisfy

ulu=osNd, must also diverge withN; otherwise, its influence
would not be felt inM2.

In Fig. 3 we show the distribution of eigenvalues for ma-
trices withN=6001. It can be seen that the largest eigenval-
ues are very close to the values predicted and the deviations
are larger for smaller values ofl /N. But for small values of
l the spectrum seems to be continuous and similar to a semi-
circle distribution.

If we assumethat the distribution is given by a discrete
part, where to dominant orderl j ,l j

c and a continuous part
given by a semicircle distribution(to dominant order), the
second moment can be used to determine the width of the
semicircle. It is known[18] that the semicircle distribution

rssld = 5 2

ps2
Îs2 − l2, for − s ø l ø s,

0, otherwise,
6 s29d

generates moments

M2j
s =E dll2jrssld =

2j !

j !s j + 1d!
ss/2d2j s30d

(odd moments vanish because of the symmetry.) From Eq.
(28), extended toj =2, we know that to obtain the correct
value of the second moment for the whole distribution, the
continuous part should satisfyM2

c=Nfg* −g*
2−sg−g2dsp1

−p2d2g. For this, the width of the semicircle must be

s = 2ÎNfg* − g*
2 − sg − g2dsp1 − p2d2g. s31d

To test the correctness of this assumption, we have used it
to scale the average of the continuous part of the spectrum of
Gp1

sgd for several values ofN andp1. The results, displayed
in Fig. 4, show that this scaling collapses all the curves onto
the unit semicircle, as predicted. Notice that the deviation
from the semicircle is only noticeable for large values ofp1,
because in this case the discrete part of the spectrum contains
a significant part of the eigenvalues, thus partially depleting
and skewing the semicircle.

FIG. 3. Average distribution of eigenvalues forGp1
sgd with

g=0.1 and p1=0.6, for N=3001 (dashed line), N=6001 (dotted
line), andN=9001(solid line). The averages were taken over 100,
30, and 10 matrices, respectively. The small vertical bars over the
horizontal axis show the first-order predictions for the discrete part
of the spectrum, extended to all values ofl.
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To confirm analytically the existence of the semicircle,
one should develop the moments to an order large enough in
the corrections to see the contribution of the semicircle. The
problem is that, whereas the order of magnitude ofMj

d is
Nj−1, the semicircle generates momentsMj

s=OsNj /2d. Thus,
for high values ofj the contribution of the semicircle lies
deeply buried under the ones of the discrete part of the spec-
trum. Nevertheless, we have calculated the moments to sec-
ond order(see next subsection) and confirmed that the semi-
circle provides the right value forM4.

The existence of the semicircle imposes a limit on the
number of eigenvalues in the discrete part: it must contain
only the eigenvalues that satisfyulu.s. Equation(13) im-
plies that the number of such eigenvalues is proportional to
N/s=OsÎNd.

Putting all this together the complete eigenvalue distribu-
tion of DPRG’s is, to first order inN,

rsld

=5
2sN − Nsd

ps2N
Îs2 − l2, − s ø l ø s,

2

N
o j=0

`
dSl − Nsp1 − p2d

sinsp jgd
p j

D , otherwise, 6
s32d

whereNs is the number of values ofj such thatNsp1−p2d
3fsinsp jgd /p jg.s—i.e., the number of eigenvalues con-
tained in the discrete part. It must be remarked that even
though these eigenvalues are degenerated, this degeneracy
breaks down for finite values ofN. Nevertheless, in our
simulations their separation is so small as to make them sta-
tistically indistinguishable inside each peak, for the values of
N chosen.

Second-order calculation

To go beyond the dominant order in the calculation of the
moments, two different contributions must be taken into ac-
count.

The first contribution is simply a refinement of the calcu-

lation of P̃ji for i .0,1 which can be split in two terms. One
of them is simply what one gets when using the second-order

term from the development ofP̃ji [see Eq.(23)]. This gives

P̃ji
s2d= iP̃j−1 i−1. The other part arises when we subtract from

Eq. (21) the paths with loops—i.e, the solutions of Eq.(19)
havingdl =0 for some values ofl (which were introduced to
make calculations easier). The number of such solutions is
OsNj−l−1d. Thus, for the second-order calculation we need to
subtract from Eq.(21) the number of solutions with only one
vanishing distance, which isiPj−1 i−1+s j − idPj−1 i. Adding
these two terms and using Eqs.(18) and (16), the first con-
tribution to the correction of the moments is obtained:

DMj
I = DPj0sp1 − p2d j − p2jM j−1, s33d

whereDPj0 is the first correction toPj0.
The second contribution originates in the fact that the

weight assigned to each cycle in Eq.(16), p1
j−ip2

i , implies that
all the edges traversed in each cycle are different. To correct
this, some paths have to be reweighted. But the number of
j-cycles withr edges repeated isOsNj−1−rd or smaller; thus,
we only need to consider cycles with one edge repeated. But
there are only two possible classes of such cycles, as shown
in Fig. 5: the first class consists of two cycles sharing an
edge which is traversed in only one direction, and the second
class consists of two cycles joined by an edge which is tra-
versed in both directions. For the first class[Fig. 5(a)], the
number of cycles isOsNj−q−2dOsNq−1d=OsNj−3d for all pos-
sible values ofq. Notice that in this caseq must be positive
for the edge to be traversed twice. The number of possible
j-cycles for the second class[Fig. 5(b)] is proportional to
OsNj−q−3d3N3OsNq−1d=OsNq−3d if qù2 and OsNj−3dN
=OsNj−2d if q=0. Therefore, the contribution of dominant
order, given by those paths withq=0 [shown in Fig. 5(c)],
can be written

DMj
II = Dg jNMj−2 for j ù 5, s34d

where Dg=gsp1−p1
2d+s1−gdsp2−p2

2d. jN is the number of
possibilities for the choice of the edge that will be repeated,

1Although the correction forP̃j0 can in principle be calculated, we
do not care about the specific functional form of it, because the
correction to the eigenvalues that give rise to this term can be di-
rectly obtained from Eq.(13).

FIG. 4. Scaling of the average of the continuous part of the
spectrum forGp1

sgd with g=0.1, for different values ofp1 andN.
The averages forN=3001,N=6001, andN=9001 have been taken
over 100, 30, and 10 matrices, respectively. The solid line shows the
theoretical prediction(semicircle distribution).

FIG. 5. Schematic representation of the possible cycles with
only one repeated edge. The legends indicate the number of edges
present in each subcycle. The edge traversed twice is shown as a
thick line.
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the two terms inDg correspond to the possibility that the
repeated term is a short or a long link, andMj−2 is the num-
ber of cycles of lengthj −2.

Notice that to obtain Eq.(34) we have only corrected the
weight of the repeated edge, assuming that in the closed part
of the paths considered(corresponding to the ovals in Fig. 5)
all edges are different. Forj .4 this is correct, because the
number of such subcycles needing reweighing is of second
order with respect to the total. But this is not so forj =4. In
this case, the oval in Fig. 5(c) corresponds to a single edge
traversed twice. Taking this into account, the right contribu-
tion to the correction ofM4 is

DM4
II = 4N2sg*

2 − g** d, s35d

whereg** =p1
2g+p2

2s1−gd.
Adding both contributions, the first correction toMj can

be written as

DM4 = sp1 − p2d3fDP40sp1 − p2d − 4p2sP30 − N2g3dg

+ N2f2sg*
2 − g**

2 d − 4p2g*
3g, s36d

DMj = jsp1 − p2d j−2sPj−20− Nj−1g j−2dDg

− sp1 − p2d j−1jp2sPj−10− Nj−2g j−1d

+ jNj−2s− p2g*
j−1 + g*

j−2Dgd + sp1 − p2d jDPj0

for j ù 5. s37d

Consider now the distribution of eigenvalues that has
been proposed to generate these moments. We must intro-
duce corrections to it, to account for the calculated correc-
tions to the generated moments. Forj ù4 only the correc-
tions to the discrete part of the distribution are needed. In
terms of the first-order term of the development of the eigen-
values, the correction to thej th moment is

DMj = jo
i=0

N

li
j−1Dli . s38d

Replacing this on the left-hand side of Eq.(37) and using
that the same holds for the corrections to the moments of the
substratesDPj0=DMj

dd, a comparison of terms in both sides
of the resulting equation gives

Dli = Dli
0 − p2 + li

−1Dg. s39d

But by construction, these corrections to the discrete ei-
genvalues generate the right corrections only to the moments
of order larger than the fourth. For the fourth moment this
discrepancy must be bridged by the corresponding moment
generated by the continuous part of the spectrum. But

DMj=4 − DM4 = 2sg* − g*2d2, s40d

which is exactly the fourth moment generated by the semi-
circle distribution given in Eq.(29).

C. Higher-dimensional substrates

The results obtained in the preceding sections can be ex-
tended to DPRG’s defined on higher-dimensional substrates.

These substrates are defined as hypercubic lattices ind di-
mensions where each node is connected to a hypercube of
k1k2¯kd other nodes. As already mentioned, we assume that
the hypercube is closed, in the sense that nodes at the bound-
aries of the hypercube are considered nearest neighbors of
the nodes at the opposite boundary.

In a d-dimensional DPRG aji -cycle can be represented as

a succession ofj distancesdW l PZd. Componentwise, this can
be regarded as the superposition ofd unidimensional sub-
cycles. Notice that the number of shortcuts used in each sub-
cycle issmaller than or equal to i. To build ad-dimensional
ji -cycle out of unidimensional paths, only the following con-
dition must be satisfied. Let us callhij the set of steps of the
d-dimensionalji -cycle that traverse shortcuts andhi lj its ana-
log for the subcycle in thelth dimensions1ø l ødd. The
condition is then that theunionof all the setshi lj be equal to
hij: øl=1

d hi lj=hij.
Therefore, counting the number of possibleji -cycles is

equivalent to counting the number of unidimensional sub-
cycles satisfying this condition. This can be written as

Pjisdd = p
l=1

d

o
i l=0

i−sl Si − sl

i l
DFp

q=1

l−1 S iq
iql
DGPji l+sll

l , s41d

with sl =oq=1
l−1 iq andsll =oq=1

l−1 iql. Pji
l is the number ofji -paths

in the lth dimension. Notice thati lq is the size of the inter-
section of setshi lj andhiqj. The evaluation of this expression
is cumbersome but straightforward, giving

Pjisdd = s− 1difPj0sdd − Nj−1gd
j g + Nj−1gd

j−is1 − gddi ,

s42d

wherePj0sdd=pl=1
d Pj0

l , andgd=pl=1
d gsld.

Using this and Eq.(16), we obtain, for the first order of
the moments,

Mj = fPj0sdd − gd
j Nj−1gsp1 − p2d j + fp1gd + p2s1 − gddg jNj−1

s43d

for j ù3. Using the same reasoning of Sec. IV B we see
that the eigenvalues satisfyingulu=OsNd must tend to
those of the substrate, rescaled by the disorder:l j1j2¯ jd
,sp1−p2dl j1j2¯ jd

c , wherel j1j2¯ jd
c are given by Eq.(14).

In analogy to the one-dimensional case, for the smaller
eigenvalues we can conjecture the presence of a continuous
distribution following a semicircle law, because of the dis-
crepancy between the real second moment and the one gen-
erated by the discrete distribution. Unfortunately, this conjec-
ture cannot be tested for all values ofd in the same way used
for the unidimensional case in Sec. IV B. The reason for this
is that, as the moments are obtained as sums of products ofd
unidimensional moments, their development involves pow-
ers ofN1/d. But the moments generated by the semicircle are
OsNj /2d. Thus, forM4 its contribution must be searched in the
dth correction to the real fourth moment, whose evaluation,
even though straightforward in principle, gets extremely
cumbersome even for small values ofd.
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Fortunately, for most applications one only needs the larg-
est eigenvalues in absolute value(see Sec. V for some ex-
amples), which are given by the discrete part of the distribu-
tion. And if a function of all the eigenvalues is needed, it can
always be rewritten as a series involving the moments.

D. Comparisons

The limit of small g should give us an idea of the ap-
proximate form of the spectrum for sparse SWG’s. In this
limit, Eqs. (4) and (5) give p1.1−p and p2.gp. From
Eq. (32), one can see that, at least for not too large values
of j , l j ,p1l0

c, for smallg. Thus, the eigenvalues accumulate
at a distance ofpgN from the Frobenius-Perron eigenvalue
l0=gN, with a trail of eigenvalues reaching to the edges of
the semicircle. In the small-g limit, the width of the semi-
circle is s.2Î2Ngs2p−p2d.

For small values ofp the eigenvalues accumulate so close
to the Perron-Frobenius eigenvalues that the gap should only
be visible for very large values ofN. The continuous part of
the distribution, whose width is proportional toÎp, gets very
small and contains few eigenvalues, so its shape becomes
very irregular and skewed to the negative side(to retain the
vanishing of the first moment). This picture is very similar to
what can be seen in Fig. 3(b) of Ref. [4].

If p is not small, the accumulation point is clearly sepa-
rated from the Frobenius-Perron eigenvalue. Besides,s can
be close toÎNg, thus including enough eigenvalues to take a
shape close to the semicircle. This shape should also be
skewed. This picture is very similar to what can be seen in
Fig. 3(c) of Ref. [4].

It is also similar to what was found in Ref.[22]. In the
graphs considered in that article links areaddedto a sparse
substrate(i.e., they are notrewired). The dense version of
this corresponds to takingp1=1 in our model. Even though it
is the spectrum of the Laplacian matrix that is studied, the
results can be translated very easily to the spectrum of the
adjacency matrix, because for large sizes the graphs can be
considered regular, in which case the eigenvalues of both
matrices can be related by the formulalL=k−lA. It is found
that two peaks appear. The closest to the Perron-Frobenius
eigenvalue is separated from it by a pseudogap(i.e., an in-
terval where there are eigenvalues, but very few of them).
This peak is found to be “in quantitative agreement with the
ring spectrum” and can be related to the accumulation point
mentioned above. The other peak, which is very irregular for
a small number of shortcuts, can be related to the continuous
part of the spectrum found in DPRG’s.

V. SOME APPLICATIONS

It is interesting to notice that the average distance and the
clustering coefficient present qualitatively the same behavior
as that seen in sparse SWG’s. We can see that for small
values of p1 the graphs obtained have average distances
which are close to those in random graphs, while retaining a
clustering coefficient close to the values present in circulant
graphs. Naturally the range of values spanned by(the loga-
rithm of) both quantities is much larger in SWG’s.

Having the distribution of eigenvalues or, equivalently,
the expression for all the moments allows one to calculate or
at least to bound many processes that can take place in
DPRG’s.

For regular graphs(i.e., graphs where all vertices have
the same degree), the spectrum of the adjacency matrix can
be very simply related to the spectrum of theLaplacianma-
trix, defined byL=D−A whereA is the adjacency matrix and
D is the degree matrix(a diagonal matrix such thatdii is the
degree of vertexi) and thenormal matrix N=D−1A. The
Laplacian has very interesting properties and many applica-
tions in physics, especially because it arises in the discreti-
zation of the Laplacian operator[23]. As SWG’s are regular,
their Laplacian and adjacency matrix eigenvalues are related
by lL=k−lA. If the eigenvalues are ordered from small to
large, the first eigenvalue isl0

L=0. The second eigenvalue is
probably the most important as it can be related to a number
of properties of processes taking place in such graphs.

In the following we show a couple of examples where we
apply the results obtained in the preceding sections.

A. Mixing rate

A random walk on a graph is defined as a Markov chain
where the probability of jumping from vertexi to vertex j is
1/di if they are connected and 0 otherwise[16]. Several
properties of random walks can be related to the spectrum of
a graph. For every timet there will be a different probability
Pts jd of finding the walker on a sitej . A stationary distribu-
tion is defined by the requirement thatPt=Pt+1 for t.T, for
some T. ps jd=dj /2M is a stationary distribution, and for
regular graphs it is unique. It can be shown that, regardless
of their initial state, all the walks tend to this distribution,
provided the graph is connected and not bipartite.

When the walk has reached the stationary distribution it
has essentially lost all memory of its initial state(or distri-
bution) and all the vertices are sampled with probability pro-
portional to their connectivity, which is useful for several
algorithms. But how fast is the convergence to the stationary
distribution? One of the possible measures of this is themix-
ing rate, defined as

m = lim sup
t→`

max
i,j

upij − dj/Mu1/t. s44d

It can be shown[16] that m=lL
N, the largest nontrivial

eigenvalue of the normal matrix. Using Eqs.(32) and(4) we
obtain

m = lL
N = sp1 − p2d

sinspgd
pg

= Fg − 1 + expS−
gp

1 − g
DGsinspgd

pg2 , s45d

where the last equality is valid for a dense SWG. This shows
that for fixed and smallg the mixing rate decreases almost
linearly with the disorder. Notice that the fact that the aver-
age distance jumps to its minimal value atp=0+ does not
influence the mixing rate.
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B. Synchronization of coupled oscillators

One of the most interesting processes that can take place
on a network is the collective dynamics of an array of
coupled oscillators. And perhaps the most striking collective
state is that where all the identical oscillators getsynchro-
nized. Naturally, synchronization is not always possible; it
depends on the specific properties of the oscillators as well as
on the topology of the network. In Ref.[24] a very useful
formalism was introduced to study the conditions for the
existence of a stable synchronized phase for a wide class of
oscillators and couplings. The equations of motion for theith
oscillator in the network are

xi = Fsxid + so
j=1

N

LijHsx jd, s46d

whereF governs the dynamics of each individual oscillator,
H is an arbitrary output function,s gives the strength of the
coupling, andL is the Laplacian matrix of the network. It can
be shown[24] that for a system of this form, the condition
for the existence of a stable synchronous state reduces to

lL
L/lS

L , b, s47d

wherelL
L and lS

L are, respectively, the largest and smallest
nontrivial eigenvalues of the Laplacian.b is a parameter
that depends only on the oscillators and its coupling, and
not on the topology.bP f5,100g for several chaotic oscilla-
tors [25].

Using Eq. (47) we can calculate the synchronizability
threshold for dense SWG’s. For DPRG’s and sufficiently
large values ofN the smallest and largest(excluding the
Frobenius-Perron) eigenvalues of the adjacency matrix are
located in the discrete part of the spectrum. The largest
nontrivial eigenvalue is alwayslL

A=Nfsp1−p2dsinspgdg /p,
but the index of the smallest eigenvalue depends ong
(see Fig. 6) An approximation to it is given bylS

A

=−Ngsp1−p2d2/3p, which is accurate enough for our illus-
trative purposes.

The synchronizability threshold is defined as the smallest
value of p for which the system becomes synchronizable.

Using the already mentioned relation between the adjacency
and Laplacian matrices, the synchronization condition for
DPRG’s becomes

b − 1

p1 − p2
,

2

3p
+

b sinsgpd
gp

. s48d

Notice that dense random graphs are always synchroniz-
able, aslL /lS=1. As was done in Ref.[25] we have calcu-
lated the synchronization threshold for a dense SWG for the
case of a system of oscillators withb=37.85. The results are
displayed in Fig. 7.

The region below the curves gives the set of parameters
for which the system isnot synchronizable. It is interesting
to notice that this implies that to obtain a synchronizable
system it is not enough to have a macroscopic number of
shortcuts. Also, the fact that in this regionp is positive shows
that the onset of synchronization does not depend on the
average distance because, as we have seen in Sec. III A, for
p.0 the average distance is the smallest possible. This sup-
ports the idea that average distance alone is not a relevant
factor for the onset of synchronization. But in Ref.[26] it has
been argued that synchronization seems to depend on the
combined effects of small average distance and uniformity of
the connectivity distribution. Yet our results show that it
must at least depend on some additional factors. For fixed
values ofg we have seen that the synchronization threshold
is pt.0, even though all graphsGpsgd have the same con-
nectivity (Ng connections per node) and the same average
distance forp.0.

VI. CONCLUSIONS

In this article we have studied some properties of dense
partially random graphs that can be obtained by adding edges
with probability p2 to a dense ordered substrate and then
deleting the original edges of the substate with probability
1−p1. We have found that they show qualitatively the same
behavior as the corresponding properties of sparse graphs, in
particular small-world graphs. For the average distance we
find that, for any macroscopic number of shortcuts, it falls to
its minimum possible value(in the infinite-size limit). We
show that the clustering coefficient decays slowly, thus al-

FIG. 6. First ten eigenvalues of the discrete spectrum of the
adjacency matrix of a DPRG. The dashed linefl=−2gNsp1

−p2d /3pg, which joins the first minima of all the eigenvalues, is
a reasonably accurate estimation of the smallest eigenvalue for
everyg.

FIG. 7. Synchronization threshold for graphsGp1
sgd. The inset

shows the critical fraction of links that must be shortcuts.
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lowing for a range of parameters where the graphs have rela-
tively large clustering and minimal average distance.

By counting cycles on the graph, we have obtained the
distribution of eigenvalues of the adjacency matrix. We
found that it consists of two parts: a discrete one where the
eigenvalues, of orderN, are simply rescalings of the corre-
sponding eigenvalues of the substrate and a continuous part
given by a semicircle distribution whose width is of orderÎN
and is proportional to the disorder. It is interesting to notice
that a similar form of the spectrum has been obtained[27]
for matrices that are the sum of a stochastic matrix and a
block matrix. The block matrix is composed ofk blocks of
size proportional toN where all off-diagonal components are
equal. The spectrum obtained consists of a semicircle distri-
bution of width proportional toÎN and a discrete part con-
taining thek largest eigenvalues(of orderN). Notice that in
our case the discrete part contains a diverging number of
eigenvalues.

We have shown how the distribution found can be useful
to understand the distributions that arise in the numerical
study of the spectrum of sparse small-world graphs. In the
studies published so far two peaks appear and a pseudogap
separates the bulk of the spectrum from the Frobenius Perron
eigenvalue. Comparing with our results for small values of
the connectivity, one of the peaks can in principle be associ-
ated with large eigenvalues of the substrate, all rescaled by
the same value(dependent on the disorder), and the other to
a continuous distribution of small width that is usually a
signature of disorder.

We have applied our results to the calculation of the mix-
ing rate of a random walk on the graph and to the calculation
of the synchronization threshold of a system of coupled os-
cillators placed on the nodes of the graph. We have shown
that below and above the threshold there exist graphs with
the same average distance and the same connectivity(i.e., the
same number of connections per vertex). Previously it has
been argued that a combination of these two factors was
responsible for the onset of synchronizability. Our results
show that there must at least exist more quantities involved.
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APPENDIX

Here we sketch the calculation that leads to Eq.(25). Al-
though we suspect that there must be a shorter path to Eq.
(25), we have not been able to find it.

We begin by splitting the dominant term in Eq.(23), P̃ji
s1d,

into two parts:

P̃ji
s1d = o

m=−mmax

mmax

o
l=0

j

s− 1dl o
p=0

minsl,j−id S j − i

p
DS i

l − p
D Nj−1

s j − 1d!

3gFi/2 − m+ p − l + gS j − i

2
− pDG =

Nj−1

s j − 1d!
sA + Bd,

sA1d

wheregsxd=xj−1usxd and

A = o
m=−mmax

mmax

o
l=j−i

j

s− 1dlo
p=0

j−i S j − i

p
DS i

l − p
D

3gFi/2 − m+ p − l + gS j − i

2
− pDG sA2d

B = o
m=−mmax

mmax

o
l=0

j−i−1

s− 1dlo
p=0

l S j − i

p
DS i

l − p
D

3gFi/2 − m+ p − l + gS j − i

2
− pDG . sA3d

Notice that, to avoid overloading the notation, we extend
the definition of the combinatorial numbers,

Sa

b
D =

a!

sa − bd ! b!

for bøa, to

Sa

b
D = 0

for b.a. By making the replacementsp→ j − i −p and
l → j − i − l, and rearranging the sums, we obtain

A = o
m=−mmax

mmax

o
p

j−i

8o
l=0

i−p

s− 1dl+j−iS i

l + p
Ds− 1dl

3gsi − v − p − l + gpd = A8 − B8, sA4d

whereoi
a8=oi=0

a s−1dis a
i
d is an operator and

A8 = s− 1d jo
p

j−i

8o
l

i

8 o
m=0

2mmax

gsv + l + gp − ad, sA5d

B8 = s− 1d j−i o
m=0

2mmax

o
p=1

j−i

s− 1dpS j − i

p
Do

l=0

p−1

s− 1dlS i

l
D

3gsv + l + gp − ad. sA6d

By manipulating the indices and reordering the sums, it is
not difficult to show thatB=B8. Using the definition ofa,
we can show thatfl +gp−ag,2mmax. Thus

A8 = s− 1d jo
p

j−i

8o
l

i

8 o
m=−l

fgp−ag

s− m+ gp − ad j−1

= o
p

j−i

8o
l=1

i

s− 1dl−iS i

l
D o

m=−l

1

s− m+ gp − ad j−1

+ o
p=fa/gg

j−i

s− 1dp−jS j − i

p
Do

l

i

8 o
m=0

fgp−ag

s− m+ gp − ad j−1.

sA7d

It is known [21] that
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o
k

a

8kn = Hs− 1daa ! Ssn,ad for 0 , a ø n,

0 for a . n,
J sA8d

where Ssn,ad are the Stirling numbers of the second kind
[21]. Using Eq.(A8) one sees that the term in the last line of
Eq. (A7) vanishes(but notice that this can only happen for
i .0). Thus, expanding in powers ofm, we get

A8 = o
p

j−i

8 o
l=1

i

s− 1dl−jS i

l
Do

k=0

j−1

sgp − ad j−1−ko
m=1

l

mk.

sA9d

Bernoulli’s expression for a sum of powers[28] is
om=1

l mk=ov=1
k+1bkmlv where

bkm=
s− 1dk−m+1

k + 1
Sp + 1

k
DBk−m+1

and Bi are the Bernoulli numbers. Using this and summing
over l, we get

A8 = o
k=i−1

j−1 S j − 1

k
Do

v=i

k+1

bvks− 1dv−j i ! Ssv,ido
p

j−i

8 sgp − ad j−1−k.

sA10d

But Eq. (A8) shows that in Eq.(A9) the sum overp
vanishes fork. i −1. Thus, only one term survives, the one
with k= i −1. Using thatB0=1 andSsi , id= i! we finally obtain

P̃ji ,
Nj−1

s j − 1d!
A8 = Nj−1g j−i . sA11d
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