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We study the properties of random graphs where for each vertegighborhoodhas been previously
defined. The probability of an edge joining two vertices depends on whether the vertices are neighbors or not,
as happens in small-world grapt8WG's). But we consider the case where the average degree of each node
is of order of the size of the graplunlike SWG’s, which are spargeThis allows us to calculate the mean
distance and clustering, which are qualitatively simiithough not in such a dramatic scale rangethe case
of SWG's. We also obtain analytically the distribution of eigenvalues of the corresponding adjacency matrices.
This distribution is discrete for large eigenvalues and continuous for small eigenvalues. The continuous part of
the distribution follows a semicircle law, whose width is proportional to the “disorder” of the graph, whereas
the discrete part is simply a rescaling of the spectrum of the substrate. We apply our results to the calculation
of the mixing rate and the synchronizability threshold.
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I. INTRODUCTION most real networks display a very short average distance
o combined with large values of the clustering coefficient. But
Many natural and artificial systems are composed of gandom graphs do not fulfill these requirements because,
large number of identical agents that interact. Examples ogven though the average distance is short, the clustering co-
this kind of system are numerous and widespread: collaboefficient turns out to be rather small. Thus they proposed a
rators in physics, neural networks, computer progréeos-  new graph model, the small world graphWG). To build a
sidered as a system of interacting subroutinése World SWG one starts with a regular arsparsesubstrate graph
Wide Web, movie actors, etc. (with large clustering but also with large average distance
The interactions, however, need not be identical and caand then rewires some edges with a probabjitythus cre-
vary in strength and range. A simplified analysis of such aating shortcuts. It was shown that a small number of short-
system can take into account only the pattern of interactionguts is enough to significantly lower the average distance
abstracting everything else. What is left is usually called avhile leaving the clustering coefficient almost unchanged.
networkand is mathematically represented bgraph(along ~ Since their proposal, the properties of SWG's have been
this article both terms will be used interchangeably. intensively studied with numerical as well as analytical
A graph is composed ofertices(associated to the agepts methods. Even though some ngmencal analy;es have peen
connected bedgesAgents only interact with other agents if Performed[4], one of the properties that still resists analyti-
there is an edge joining the corresponding vertices, and thg{l/lvér,eatment is the spectrum of the adjacency matrix of
strength of the interaction is given by theightof the edge. S

: : : : The constraint of sparsity is justified by the fact that man
The interactions between graph theory and physical SCIeNCRetworks in nature d?splayythi]s charactgristic But one ca¥1
particularly physics, has been very fruitfid]. '

In 1959 Erdos and RenyP] started a whole new branch also find systems where the pattern of connections of every

d ignificant porti f the whol o, th
of graph theory by creatingand extensively studyinghe node spans a significant portion of the whole gréiph, the

degree of the nodes is of the same order as the size of the
concept ofrandom graphs These are graphs where each network. Some examples of this are the network of train
edge has a defined probability of being present, and thi

it in Indi he full i hs of th l
probability is independent of all other edges. They seem par. outes in Indig[S], the full reaction graphs of the metabolic

cularl Il suited for th dv of ¢ hich th network of E. coli [6,7], and the network of the interacting
ticularly well suited for the study of systems for which there , i of the computer programoziLLA [8].
is little information about the range of the interactions. In

. - n this article we study the properties of graphs for which
these cases It seems natural to assign independent and eq sparsity constraint has been dropped. This allows us to
probabilities to the different connections.

Th di f his defined h calculate analytically the average distance and the clustering
e average distance of a graph Is defined as the averagfefficient, as well as the whole eigenvalue distribution of
of the length(i.e., the number of verticgof the smallest

the corresponding adjacency matrices. The spectra of these
path joining two edges. The clustering coefficient gives th fresponting ac y riees °p S

) . Snatrices can be considered as limiting cases of the ones of
average number of connections present between neighbors Qimse SWN's

a vertex, d|\{|ded by the number of poss@le CONNECHioNS * the yalues of the different properties calculated in this
ywthln _the neighborhood of the vertex. In their groundbreak—article are onlyaveragesover a certain family of graphs
ing article of 1998, Watts and Strogat¥/S) [3] showed that (defined in the next sectignNevertheless, simulations sup-
port the idea that the properties of almost every graph of this
family should tend, in probability, to the average values
*Electronic mail: srisau@if.ufrgs.br found.
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In Sec. Il we define the model and relate it to the Watts—+(1-7y)p,]. But in the limit treated in this article, of large
Strogatz prescription. In Sec. Il we calculate the averagealues ofN, the deviations from this average value are ex-
distance and the clustering coefficient. In Sec. IV we obtairponentially small. To interpolate with only one parameter
the spectrum of the corresponding adjacency matrices arisetween a fully ordered and a fully random graph, we fix this
compare it to the spectrum of sparse graphs. A couple ofverage value by requiring thap;+(1-y)p,=1v (along the
applications of the results obtained are presented in Sec. YMaper, though, results will be displayed for gengradndp,,

In Sec. VI some conclusions are drawn. unless otherwise statgdNotice that in this case the average
number of connections of each vertexkisChoosingp; as
Il. MODEL the preferred parameter, a graph satisfying the relationship

shown above is calle@ (y) and the family of graphs with
p, and y fixed is calledg, (y). As mentioned, fop, =1y the
family gpl [10] of completely random graphs is obtained.

. . In our model the number of shortcutspgN, for largeN.
WS [3] proposed a graph model capable of mterpolatlng-l-O be able to compare the graphsdg (y) with SWG's, it is
between order and randomness. The graphs in this model are 1 '
. . o ; . necessary to know the number of shortcuts of the graphs
built by taking asubstrate which is a graph displaying some : L -
. g ; generated with the WS prescription. In the sparse case, it is
regularity, and randomlyrewiring some of its edges, by

keening fixed one end of some edaes and redirectin thknown that this number is-pkN/2. This comes from the
bing . 9 . 9 MBct that the sparsity of the network ensures that when a link
other end to a different vertex at random, but following some

rule. Let us consider, for example, the unidimensional case> selected, the probability that it will be rewired to a vertex

where each vertex in a ring is connectedki@ vertices to ihside the samé&-neighborhood is-1/N. But if the network

the left andk/2 vertices to the right. The process begins by!S dense, this pmb"’?b"'ty hecomes nonyam;hmg. The follow-
. . . . ~’ing procedure provides a good approximation to the number
traveling clockwise on the ring and, for each vertex rewiring,

with probability p, the connection that joins it with its first of shortcuts. . . . .
) . . . Instead of disconnect and rewire the links sequentially
neighbor to the right. Once the circle is completed, a new .
. . . : In each round, let us assume that in each rophdshort
round is made where now the connection rewired is the one

to the second neighbor to the right. The process ends aftéardges are deletedt onceand thenpN randomedges are

. ; added, which can be short or long. The process begins with
k/2 rounds(becausek/2 is the number of neighbors to the _ :
right). A similar process can be implemented for a higher-ontlzgmirsn_bg:l/ozf :Egrr: :éjg:Ss ;)f[:rsﬁgﬁtrlghtgﬁ ?r:gp:qrx\éifa”
dimensional substrate. The graph obtained is called a SWGS." 9 t

In our model of dense partially random gragBPRG's, of long edges. Notice that after deletipgN short edges,

we only consider hypercubic lattices as substrates, with th%ahe probability that one of the random edges added is short

hope that for other substrates thinas will not be very differ-> the quotient between the number of available short edges
P . 9 y and the number of total available edgésN+S-S)/(L+S

ent, as is the case for sparse SWE. In these lattices —L+pN)=(pN+S-S)/(L+pN) h L=N(N-1)/2

VCRY and each dimension has a different connectivity pa- S~LrpN)=(p S P, where L=

rameterk;, which means that each node is connected to g S We are using the_ fact t_hat the numb_er of edg_es is con-
hypercube  of k=Hid=1k‘—1 nodes. This defines a served(S§+L;=9S). Using this, the evolution equations for

k-neighborhood for each vertex. As opposed to the usudfr9e enougtN can be obtained:
constraint of considering sparse networks, here we are con-

A graph is a pair of setgV,E), whereV hasN elements
(or vertices and ECV? hasM elements(or edges Two
verticesv, andv, are connected ifvy,v,) € E.

cerned only withdensegraphs—i.e., graphs where each ver- S+1=S-pN+ pNM, (1)
tex is connected ti&=O(N) other vertices. Notice that, to L+pN

have the same number of neighbors for all nodes, we are

considering periodical boundary conditions for the lattices. Liz1=S-Su1- (2

Thus, the one-dimensional lattice is formed by points on a )
ring, the two-dimensional lattice by points on a torus, etc. The second summand in E@l) corresponds to the edges
We randomize the graph in the fo”owing Way: each edgéjeleted and the th|rd to the fraCt|0n Of edges added that are
in everyk-neighborhood is deleted with a probability p~  short. This formula can be iterated to obtain
and vertices that do not belong to the sakaseighborhood 41
are joined with probabilityp,. This is equivalent to saying S.=S-L+ L(;> _ (3)
that, on an empty graph, each vertex is joined sphartlink L+pN
with probability p; to every vertex in itk-neighborhood and
with probability p, to those outside it, by dong link or
shortcut A graph generated with this prescription is called
Gplpz(y), with y=k/N. The family of all such graphs, fqu;, 1-y P
p2, andy fixed, is calledgy (7). With p;=1 andp,=0 one P1=S/S~1- — 1- 9XF<— E) : (4)
obtains the ordered substrate, whereaspigrp,=k/N one
obtains a random grapgiQ].
Notice that each vertex has a different number of connec- D=L/l ~1- ex;(— 3’_p> (5)
tions, whose average number kp;+(N-1-Kk)p,~ N[ yp; 27k 1-v/

After t=k/2 rounds and in the limit of largk andN such
that y=k/N, we obtain

056127-2



PROPERTIES OF DENSE PARTIALLY RANDOM GRAPHS PHYSICAL REVIEW B), 056127(2004

P, 1.0
0.35

0.30 0.8

0.25

06

A (d-dmln)l(dmux-dmln)
e (cC_)C,_C

0.20

min)

0.15 04}
0.10
0.2 4 4 A,
0.05 a
A
0000 0.2 0.4 06 0.8 1.0 00k . S
) ) T p ’ ’ 10* 10° 10? 10

1-p
FIG. 1. Fraction of shortcuts as a function of the rewiring !
probability p. The symbols are averages taken on 30 matrices with FIG. 2. Average random distance and clustering coefficient
N=6001. The lines are the theoretical predictions. Error bars aréor graphstl(y), scaled by their maximum and minimum values.
smaller than the symbols. The symbols are averages taken on 30 matrices Miti6001 and
y=0.1. The line is the theoretical prediction for the average dis-

Figure 1 shows that the agreement with the real number gfnce. Error bars are smaller than the symbols.
shortcuts for dense SWG's is very good. Thus, in what fol-
lows, to translate the results of our model to dense small- Notice that for graphs i@pl(y), in the infiniteN limit, the
world graphs, it suffices to takp, and invert Eq.(5) to average distance fqw <1 is only a function ofy: E:Z—y.
obtain the corresponding Notice that for values op close  For p, =1 and p,=0, the graph is circulant, and it is not
to 1 there is some “overshooting,” as the_ resulting SWG'syifficult to see that the average length(is+7)/2y [9]. In
have more shortcuts than the corresponding random graprp-_sfg_ 2 it can be seen that for finite but large valuesnof
(ie., p2>7). the average distance falls very rapidly with the number of
Ill. TOPOLOGICAL PROPERTIES shortcuts.
A. Average distance B. Clustering coefficient
For random graphs with a numb&(N?) of edges, it is
known that the diametefi.e., the largest distance between
any two nodesis equal to 2, for large values df. This

The average distance can be thought of agoaal prop-
erty of a graph: it gives an idea of how far apart is any vertex

means that from any vertex only 1 or 2 steps are needed from any other. Thelustering coefficienprovides a different

o o ind of information: it is a measure of how locally connected
reach any other vertex. This in turn implies that the average : ; .
; " . 7Ts the graph. It is obtained by calculating, for every vertex of
distance in such a graph tends tof2+or a general graph it . L : . .
. ; h ; the graph, the number of links joining points of its neighbor-
is known [11] that 2—p, with p=2M/N(N+1), is a lower - : . 7
. S . . ood divided by the total number of possible links in the
bound to the average distance. It is interesting to notice th

. , . eighborhood and taking its average over all vertices. This
this bound is achieved by some graggars, for gxampbg ives the probability that two neighbors of a vertex are con-
Random graphs, on the other hand, only achieve it in th

TR S ected to each other. It can be shoy2] that this is equiva-
limit of infinite N. In our model this implies that the average lent to calculating the total number of triangles in the graph,

distance satisfied=2-p;y—p(1-7). divided by the total number of paths of length(lereafter
The graphs inG, , () can be generated as the union of called 2-paths

two random graphs. One of them is simply a completely Instead of calculating this number for every graph and

random graph with edge probabilify,, calledG,, . For the  then averaging over the ensemble, we calculate an “an-

other, the probability that an edge is present is O if it is a longnealed” version of if13]: we take the average of the number

edge and=(p;—p,)/(1—p,) if it is a short edge. This union of triangles and divide it by the average number of 2-paths.

results in a graph equivalent to the one obtained by adding Bor large values oN the agreement with the numerical val-

numberN, of edges toG; , such thatN,=(1-p,)py. Now  UEs tums out to be very goadee Fig. 2 _
every one of these additional edges has the effect of decreas- To calculate the number of 2-.paths,' one h‘."‘S o find the
ing the average distance of the graph by at Iéast Thus, number of 2-paths for every matrix, weigh it with the prob-

averaaing over all araphs i _the mean average dis- ability o_f that matrix, and_ then sum over all possible graphs.
ging 9raphs Hip,p,(7) g An equivalent way of doing this is to sum over all possible

tance must satisfl<2-p,~yp(1-p2)=2-p1y=Pz(1-%).  paths, with a weight given bgip2, wherei is the number
This, together with the upper bound, implies that, in mean ¢ long links in the path.

d=2-p;y—ps(1-7y) for largeN. The fact that this value is a In the limit of infinite N all vertices are equivalent and
lower bound for general graphs ensures that, for large valugsis enough to consider all the paths beginning from a fixed
of N, almost every graph has an average distance equal to tivertex and then multiply byN. To count these paths,
mean. one needs to know the size of the intersection of the
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k-neighborhoods of two points. < 279, this intersection is  matrix whereA;; =1 if there is an edge connecting vertides

a connected region and the calculation of its size is venyandj, and 0 otherwise. Diagonal elements are set to 0. The

simple. We analyze only this case, because one is usuallsigenvalues oA provide a lot of information about the struc-

interested in low dimensions. For bigger valuesydhe cal-  ture of the graplisee Ref[14]). For example, if the graph is

culations are straightforward but much more cumbersome. regular and its eigenvalue distribution is symmetric, then the
Assuming the fixed vertex located at the origin and itsgraph is bipartite. Eigenvalues also provide useful bounds to

other end at a positioR e Z9, the size of the intersection of quantities as different as the diameter of a grgi#j and the

the twok-neighborhoods is mixing rate[16] of random walks. In the following section
(4 we summarize some results for the spectrum of circulant
. - graphs which will be useful in our determination of the spec-
g i), X e I\ (0), trum of DPRG’s.
I(x)=4 ¢ (6) A. Circulant graphs

[11:(x) -2, X ey -Ty0),

i1 The family of circulant graphs is one of the few for which

all the eigenvalues and eigenvectors can be calculated ana-

\ 0, x e I'a(0), lytically [17]. The adjacency matrix of such a graph is a
wherel'(0) is the set of nodes that form tieneighborhood ~ Circulant matrix, where row is simply the first row shifted
of the origin and i places to the right. In our case, the adjacency matrices of
the graphs withp; =1 andp,=0 are circulant. They are sym-
[i(X) =2k — || + 1. (7) metric matrices with null diagonal elements, satisfying, for

d=1 andj>i, A;=1 for j-i<k/2 and 0 otherwise.
The eigenvectors of these matrices ake vectors
0;=(Lpj.p...pp ) for  O<j<=N-1, with p
N, = S I(R){p2 (X) + 2p1pol [T — 1(R)] :exp(27_r]/N). Interestm_gly, all circulant matrices r_\ave the
%G same eigenvectors. This is not the case for the eigenvalues,
which satisfyn==N_A.p'™%. In our case, this gives
+ AN 20 + 10T, ®) A==ty .

N . L
with II(X)=1. The first term in the curly brackets counts the A= pj‘(klz"l)E g mKiN = 200< m (W2 + 1)>S'r?(7TJI$/2N)_
number of paths with two short edges, the second counts the i=1 N sin(mj/N)

paths with one short and one long edge, and the third counts (12)
those paths with two long edges. To calculate the number of

triangles one proceeds in exactly the same way, but it must Except for the first one, the Perron-Frobenius eigenvalue
now be assumed that the endpoints of the paths are comg=k, all the other eigenvalues satisty=\y_j (we consider
nected by an edge. Thus, the number of triangles is given b9nly odd values oN). Thus, there aréN-1)/2 eigenvalues
Eq. (8) usingII(X)=1-p, for X e I'(0) andII(X)=1-p, for  with multiplicity equal to 2. Forj <N we have

Using this, we obtain that the total number of 2-paths is,
to first order inN,

i;t;/i;gé(i(;). After some algebra the clustering coefficient ﬁf _sin(miy) ZSinz(Wi Y2 sin(miy) . o(ﬁ)
N N 3N? N4/
¢ = 2P1 =PI UBI= 3l + (o= Pyt 0o g (13)
[(p=P2) 74+ P2l For j=O(N), it can be seen from Eq12) thatA\{=0(1).
with For d>1 our substrates are reticles where the range of
d connection of each node depends on the spatial direction
=TI » (10) through a variablek;. The adjacency matrices for these
% -1 % graphs are simply the Kronecker prodyet tensor produgt

_ N of the correspondinl*®x N*® matrices for each direction:
In the case of a grapl®, (y) the clustering coefficient A=A(k)) @ A(ky) ® ... ® A(ky). The resulting matrix is circu-

simplifies to lant and has the nice property that its eigenvalues are
C=(p1~ p)’[(3/4 = 4] + 74 (11) d _
_ _ _ _ N =1INS fori<ji<N, (14
A comparison with data obtained from graphs with 6001 Pzrid i

vertices can be seen in Fig. 2. Theory and data only differ . .
where 1-,=(yN)"%, where our approximations do not Where thexj’s are given by Eq(12).

hold. B. Dense partially random graphs

The momentsM; of an NX N matrix A are defined by
N
For a graph with no loops and with no multiple edges, as M; = N=Tr(A) = N‘lz )\f (15)
those treated in this article, the adjacency ma#tiis a 0-1 i=0

IV. SPECTRUM OF THE GRAPH
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The jth power of an adjacency matrix gives information <N/2. For short links, the corresponding distances satisfy
about all the possible paths of lengfhin the associated 1< |d|<k. Thus,P; is the number of solutiond e Zi of the
graph. More specificallyA');, is the number of-paths that problem
connect verticesandk. Thus, the trace of thgh power ofA )
is the total number of closed paths, cal®ales of lengthj. !

If, for an ensemble of matrices, the calculation of the 2 di=mN for [m| <My,
average number of cycles can be performed for every length, =1
by using the averaged version of H{5) it is possible to

obtain the average distribution of eigenvalues. This is the 1<|d|<k2 ifli=<I=<i,

route taken by Wignef18] in his famous derivation of the

semicircle law for random matrices. His work was after- kK2<|d|<=(N-1/2 ifi<l<]j. (17)
wards extendefl19] to prove that for large matrices the dis- ) o . ) )
tribution of eigenvalues ofilmost everymatrix of the en- Using the principle of inclusion and exclusi¢@l], P;;

semble tends to the semicircle. In RE0] the same method Can be written as

was used to calculate the moments of random 0-1 matrices. i )
In both these works and in many others, all the cycles are P.=S (-1 i—I(I )T;,‘ (18)

characterized as sequences of vertices. For each sequence of I = AR

lengthj the statistical weight is the same, as all the edges in ~

the graph have the same probability of being present. whereP; is the number of solutions to the simpler problem
In our model this is different because short and long links :

have different probabilities. Therefore, in our case it is better J B

to characterize each cycle as a successiodisihnces We Z di=mN_ for [m < Mpay

begin by analyzing the unidimensional case, and afterwards =t

we indicate the modifications necessary to extend the results

to higher dimensions. I<ld|=k2 ifl<I<i,
On a ring, vertices can be consecutively labeled with
numbers from 1 tdN by going round the circle. When stand- 1<|d|=(N-1/2 ifi<l<]. (19)
ing on a vertex, a walker can only make a step to the right or _
to the left. The distance between verticesd] is defined as P;i corresponds to the number of cycles where fixed
d;j=min(fi =j|,N=[i=j|). Intuitively, it is the shortest number steps use short links, whereas the other steps can use either

of consecutive vertices, including the end vertex, that dong or short links. It is not difficult to see th&; is of order
walker must traverse to go fromto j. To define a direction NI~ (as the path is closed, only-1 steps may be freely
we say that if a walker, using an existing link, goes fromchose. Notice thatd, cannot be zero because loops are not
vertexi to vertexj such that(i-j) mod N<(N-1)/2, then  allowed. But the presence of loops only addjpterms of
he has made a step to thight, covering a distancel;.  order jNI"2. As we are only interested in the dominating
Otherwise, we say that he has traveled to the left, covering &erm, we include the loop terms, that allow for simpler cal-
distanced;;. Thus, aj-path can be defined by a succession ofculations. Using this and rescaling the distances, the problem
j distances. The total distance traveled is the sum of thef Eq.(19) can be rewritten as the number of solutions of
signed distances. _

If the path is a closed one—i.e., a cycle—the total signed < ) o
distance must be equal toN, because the cycle can contain 2 d=i(2+D+(-D)(N+D/2+mN for [m| < mpg,
m complete rounds of the circle. In a cycle traversifigng B
edges, called @-cycle, the number of complete rounds will

be bounded bymy.,=L(j=i)y/2+i(N+1)/(2N)], where x| lsdsk+1l ifls<Isi,
gives the largest integer smaller than or equaktd; is
defined as the number §if-cycles for a fixed position in the 1<sd <N ifi<l<j. (20

cycle of thei long links. Because the probabilities for each . ) o ) ) )
edge are independer®; does not depend on the actual po- Using again the principle of inclusion and exclusion, we
sitions of the long links. As the probability of -cycle is ~ 9t
Py P>, the average ovef, , (y) of the jth moment is Mg | ) (|
(] Pi= 2 2D X (p)
— [ — =— |= =
Mj=2<i)pi'p'zpji. (16) " e =0 - p|° i
i=0 | p, ,m +J -

. _ . ( )( A )@(me,l,m)),
As explained in the Introduction, all the quantities calcu- j-1
lated in this article are averages. Thus, hereafter we drop the (22)
overlines to avoid overloading the notation.

Let us calld, the distance traveled in théh step. To long where®(x) is the Heavisidgor step function [@(x)=1 for
links there correspond signed distances satisfying|d| x>0 and®(x)=0 otherwisg and
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i j-i p+il2 p(A)
fnplm=--m+p-l+y—/—-p|- .
n(p,1,m) > p 7( 2 p) N 10+
(22 81
As we are only interested in the dominant term@@fwe 61
develop it in powers ofN to get 4
B O Mmax min(l,j—i) i i N
Pji =N E E (_ 1)| E ( )( ) 051 b2 om0 0o adoe 600
=M 1=0 0 \ P /\=p 0{oks b S —
fi-1 fi-2 i 001 000 001 002 003 004 005
oo "N (7 - p) +O<N'2>}(fm), N
J ' . ' FIG. 3. Average distribution of eigenvalues f@j () with
(23)  ,=0.1 andp,=0.6, for N=3001 (dashed ling N=6001 (dotted
where line), andN=9001(solid line). The averages were taken over 100,

30, and 10 matrices, respectively. The small vertical bars over the
_ _ [ j—i horizontal axis show the first-order predictions for the discrete part
fo=fu(plv) = 57 m+p=1+yl 5 Pl. 24 ofthe spectrum, extended to all values\of

For the first-order term of Eq23), the sums can be per- |\ |=o(N), must also diverge with\; otherwise, its influence
formed (see the Appendixto obtain the simple result would not be felt inM,.

S Ni-Loj-i <i<i In Fig. 3 we show the distribution of eigenvalues for ma-
Pi =Ny forl<i<j. (25 trices withN=6001. It can be seen that the largest eigenval-

F0r|~3j0 there is not such a simple expression. On the othekH€S are very close to the values predicted and the deviations

~ ~ . are larger for smaller values aff N. But for small values of
hand,P;o=Pjo. Thus,Pyo is the number of-cycles of a graph "o i im seems to be continuous and similar to a semi-
with only short links—that is, a circulant graph. Thus, it can b

: circle distribution.
be written as If we assumethat the distribution is given by a discrete
- Nl part, where to dominant ordehrj~)\jc and a continuous part
Pio=Pjo= 2 A, (26)  given by a semicircle distributiofto dominant order the
1=0 second moment can be used to determine the width of the
where the\'s are the eigenvalues of a circulant matrix, given Seémicircle. It is knowr{18] that the semicircle distribution

by Eg.(12). )
Using all this, the number gji-cycles can be calculated, ——\o?=\2, for —o<\<o,
giving ps(\) = 70® (29
Pii = (- 1)/(Pjo— NITtyl) + NiThyiTi(1 = )T, (27) 0, otherwise,

Using this and Eq(16), we obtain, for the first order of 9geénerates moments
the moments of a dense partially random matrix,

. o . 2! A
M;=(Pjo= YN (p; = pp)) + ANITL for j=3, (29 3 —fdMZJPs(U—m(U/Z)z’ (30)

where y. =p, y+ p2(1_—7) Is the average degree of a vertex, odd moments vanish because of the symme#ypom Eq.
The spectrum of eigenvalues that generates the momen 58) extended toj=2, we know that to obtain the correct
corresponding to Eq28), for all values of j(i.e., not only value of the second moment for the whole distribution, the

for j=3), satisfieshy/N— y and\j/N— (p;—p)\j/N for . . _ VP
j=1. Notice that this would imply that the whole spectrum Eon;tgr]\ulc;l;? tr?izrtthsehSVl:(I:ﬁh Z?tlifz/lszenl:li?i/;cleﬁmlgt bi)(pl
is only a rescaling of the spectrum of the substfatay the P2 '

first eigenvalue is scaling differenjlyBut the problem is o 2
that, because of the symmetry of the matrices, the second 0= 2\NLy- = % = (7= )P~ p)°]. (3D
moment is, to first ordemM,=Ny, clearly different to what To test the correctness of this assumption, we have used it
would be obtained by setting=2 in Eq.(28) (Mj-,=N[(y to scale the average of the continuous part of the spectrum of
-Y2)(p1—p,)?+ v-]). This means that not all the eigenvalues Gy, () for several values o andp;. The results, displayed
can tend to the values mentioned above. in Fig. 4, show that this scaling collapses all the curves onto
On the other hand, the fact thist;=O(N/"!) implies[see  the unit semicircle, as predicted. Notice that the deviation
Eg. (15)] that every eigenvalue that satisfias=O(N) must  from the semicircle is only noticeable for large valueggf
tend to (p;—p,)A° And from Eq.(13) it can be seen that because in this case the discrete part of the spectrum contains
the number of such eigenvalues diverges withBut the  a significant part of the eigenvalues, thus partially depleting
number of eigenvalues thdb nottend to\., which satisfy — and skewing the semicircle.
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0.0 ¥ , for FIG. 5. Schematic representation of the possible cycles with
-1.0 0.5 0.0 0.5 1.0 only one repeated edge. The legends indicate the number of edges
Mo present in each subcycle. The edge traversed twice is shown as a
thick line.

FIG. 4. Scaling of the average of the continuous part of the

spectrum forG, (y) with y=0.1, for different values op; andN. . T . )
The averages flon\|:3001,N:6001, andN=9001 have been taken The first contribution is simply a refinement of the calcu

. = . 1 . -
over 100, 30, and 10 matrices, respectively. The solid line shows th&tion of P for i>0," which can be split in two terms. One
theoretical predictioisemicircle distribution of them is simply what one gets when using the second-order

term from the development cﬁji [see Eq(23)]. This gives

To confirm analytically the existence of the semicircle, Pfiz):in_1 i-1- The other part arises when we subtract from
one should develop the moments to an order large enough &q. (21) the paths with loops—i.e, the solutions of Ed9)
the corrections to see the contribution of the semicircle. Théavingd,=0 for some values df (which were introduced to
problem is that, whereas the order of magnituderf is  make calculations easierThe number of such solutions is
NI~ the semicircle generates momem@:O(Nj’z). Thus, O(NI7'"1). Thus, for the second-order calculation we need to
for high values ofj the contribution of the semicircle lies subtract from Eq(21) the number of solutions with only one
deeply buried under the ones of the discrete part of the speeanishing distance, which i#;_; i_+(j—i)P;_; ;. Adding
trum. Nevertheless, we have calculated the moments to sethese two terms and using Eq48) and(16), the first con-
ond order(see next subsectipand confirmed that the semi- tribution to the correction of the moments is obtained:
circle provides the right value fdvl,. ; .

TheIO existence of%he semicirclztle imposes a limit on the AMJ! = APjo(pL = P2)' ~ PaiMj-a, (33)
number of eigenvalues in the discrete part: it must contairwvhereApjO is the first correction td®jo.

only the eigenvalues that satisfy|>o. Equation(13) im- The second contribution originates in the fact that the
plies that the number of such eigenvalues is proportional tQueight assigned to each cycle in E6), p}'p, implies that
N/a=0O(N). all the edges traversed in each cycle are different. To correct
Putting all this together the complete eigenvalue distributhis, some paths have to be reweighted. But the number of
tion of DPRG's is, to first order i, j-cycles withr edges repeated ®(N'"*™) or smaller; thus,
we only need to consider cycles with one edge repeated. But
p(\) there are only two possible classes of such cycles, as shown
2AN-N,) in Fig. 5: the first class consists of two cycles sharing an
LN —o<\<o, edge which is traversed in only one direction, and the second
_ 7o°N class consists of two cycles joined by an edge which is tra-
T 2 sin(7jy) . versed in both directions. For the first clg$3g. 5a)], the
NEJ:O S N=N(py—p)— |,  otherwise, number of cycles I©O(NIT92)O(N91) =O(N/-3) for all pos-

sible values ofy. Notice that in this casg must be positive
(32) for the edge to be traversed twice. The number of possible
_ _ j-cycles for the second clag&ig. 5b)] is proportional to
whereN, is the number of values gf such thatN(p;=p)  O(NI=9-3) x NX O(N9L)=O(N93) if gq=2 and O(NI"3N
X[sin(mrjy)/ mj]>o—i.e., the number of eigenvalues con- =o(Ni-2) if q=0. Therefore, the contribution of dominant

tained in the discrete part. It must be remarked that evegyger, given by those paths with=0 [shown in Fig. %c)],
though these eigenvalues are degenerated, this degenerggf pe written

breaks down for finite values ofN. Nevertheless, in our ' ) )
simulations their separation is so small as to make them sta- AMj =AyNM;_, for j=5, (34)
tistically indistinguishable inside each peak, for the values O(NhereAy: y(pl—pf)+(l—y)(p2—p§). iN is the number of

N chosen. possibilities for the choice of the edge that will be repeated,

Second-order calculation E— ~

) ) ) lAlthough the correction foPj, can in principle be calculated, we
To go beyond the dominant order in the calculation of thedo not care about the specific functional form of it, because the

moments, two different contributions must be taken into accorrection to the eigenvalues that give rise to this term can be di-

count. rectly obtained from Eq(13).
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the two terms inAy correspond to the possibility that the These substrates are defined as hypercubic latticelsdin

repeated term is a short or a long link, ad_, is the num-  mensions where each node is connected to a hypercube of

ber of cycles of length-2. kiky - -kq other nodes. As already mentioned, we assume that
Notice that to obtain Eq:34) we have only corrected the the hypercube is closed, in the sense that nodes at the bound-

weight of the repeated edge, assuming that in the closed paaties of the hypercube are considered nearest neighbors of

of the paths considergdorresponding to the ovals in Fig) 5 the nodes at the opposite boundary.

all edges are different. Fgr>4 this is correct, because the  In ad-dimensional DPRG &-cycle can be represented as

number of such subcycles needing reweighing is of secong syccession of distancedd, e 79, Componentwise, this can
order with respect to the total. But this is not so fer4. In  pe regarded as the superpositioncfinidimensional sub-
this case, the oval in Fig.(§) corresponds to a single edge cycles. Notice that the number of shortcuts used in each sub-
tion to the correction oM, is ji-cycle out of unidimensional paths, only the following con-

0 an2f 2 dition must be satisfied. Let us cdi} the set of steps of the
AMz =4N (% = ), (35 d-dimensionalji-cycle that traverse shortcuts afig its ana-
where . =p2y+p3(1-7). log for the subcycle in thdéth dimension(1<I=<d). The
Adding both contributions, the first correction kb; can  condition is then that thanion of all the setdi;} be equal to
be written as {it: Ul diy={il.

Therefore, counting the number of possiljiecycles is

— _ 3 _ _ _ N2
AM4 = (P1 = P2 TAPug(P1 ~ P2) — 4pa(Pao~ N*)] equivalent to counting the number of unidimensional sub-

+ N7 2(12 = 2.) — 4p,y3], (36)  cycles satisfying this condition. This can be written as
AM; =j(py - P (P20~ NIy 2)Ay =8\ (e | o
: ! e P =TT { " JITI{."] [P+, (4D
= (1= P2 1ip2(Pj10= N2y =ti=0 N I /] g=1 Mal
Ni- -1, _j-2 '
+ NI (= ppd ™t + Y%A ) + (py — 2! APyg with §=3¢iq andsy == Jiq. P} is the number ofi-paths
forj=5. (37) in the Ith dimension. Notice that, is the size of the inter-

) o ) section of setsi;} and{iy}. The evaluation of this expression
Consider now the distribution of eigenvalues that hasg cymbersome but straightforward, giving

been proposed to generate these moments. We must intro-

duce corrections to it, to account for the calculated correc- P (d) = (= DITP.n(d) = N2 T+ Ni"24di(1 = )i
tions to the generated moments. Faer4 only the correc- i@ = D1Pio(d) el Ya (L=
tions to the discrete part of the distribution are needed. In

terms of the first-order term of the development of the eigen-

—d pl —yqd
values, the correction to thi¢gh moment is where Pjqo(d) =111 Pjo, and y=ITjzy 1) _
Using this and Eq(16), we obtain, for the first order of

the moments,

(42)

N
AM; =2 NTTAN,. (38)
=0 M; =[Pjo(d) = AN 1(pr = Po)) + [Prya+ Pa(L — y) TN

Replacing this on the left-hand side of E§7) and using (43)
that the same holds for the corrections to the moments of the
substrate AP;,=AMY), a comparison of terms in both sides for j=3. Using the same reasoning of Sec. IV B we see
of the resulting equation gives that the eigenvalues satisfyinf\|=O(N) must tend to

AN = AN = py+ N 1Ay, (39) those of tfge substrate, Crescaled by the disordef:..;
~(P1=P2)A] j, .5, WhereX ; ; are given by Eq(14).

But by construction, these corrections to the discrete ei- In anak)gy to the one-dimensional case, for the smaller
genvalues generate the right corrections only to the momentsigenvalues we can conjecture the presence of a continuous
of order larger than the fourth. For the fourth moment thisgistribution following a semicircle law, because of the dis-
discrepancy must be bridged by the corresponding momergrepancy between the real second moment and the one gen-
generated by the continuous part of the spectrum. But  erated by the discrete distribution. Unfortunately, this conjec-

_ 2 ture cannot be tested for all valuesdin the same way used
AMjzs= AM4 =2 = y2)%, (40" f0r the unidimensional case in Sec. IV B. The reaso)rq for this
which is exactly the fourth moment generated by the semiis that, as the moments are obtained as sums of produdts of
circle distribution given in Eq(29). unidimensional moments, their development involves pow-
ers of NYd, But the moments generated by the semicircle are
O(N/'2), Thus, forM, its contribution must be searched in the
dth correction to the real fourth moment, whose evaluation,

The results obtained in the preceding sections can be exeven though straightforward in principle, gets extremely

tended to DPRG’s defined on higher-dimensional substratesumbersome even for small valuesdf

C. Higher-dimensional substrates
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Fortunately, for most applications one only needs the larg- Having the distribution of eigenvalues or, equivalently,
est eigenvalues in absolute val(gee Sec. V for some ex- the expression for all the moments allows one to calculate or
amples, which are given by the discrete part of the distribu-at least to bound many processes that can take place in
tion. And if a function of all the eigenvalues is needed, it canDPRG's.
always be rewritten as a series involving the moments. For regular graphsi.e., graphs where all vertices have
the same degréethe spectrum of the adjacency matrix can
be very simply related to the spectrum of th&placianma-
trix, defined byL =D —A whereA is the adjacency matrix and

The limit of small y should give us an idea of the ap- D is the degree matriga diagonal matrix such thak; is the
proximate form of the spectrum for sparse SWG’s. In thisdegree of vertex) and thenormal matrix N=D™A. The
limit, Egs. (4) and (5) give p;=1-p and p,=1yp. From  |aplacian has very interesting properties and many applica-
Eq. (32), one can see that, at least for not too large valuesions in physics, especially because it arises in the discreti-
of j, \j~ piAg, for smally. Thus, the eigenvalues accumulate zation of the Laplacian operatf23]. As SWG's are regular,
at a distance opyN from the Frobenius-Perron eigenvalue their Laplacian and adjacency matrix eigenvalues are related
Ao=7N, with a trail of eigenvalues reaching to the edges ofpy A\-=k—-\". If the eigenvalues are ordered from small to
the semicircle. In the smah-limit, the width of the semi- |arge, the first eigenvalue k%:o_ The second eigenvalue is
circle is o= 22Ny(2p-p?). probably the most important as it can be related to a number

For small values op the eigenvalues accumulate so closeof properties of processes taking place in such graphs.
to the Perron-Frobenius eigenvalues that the gap should only In the following we show a couple of examples where we
be visible for very large values ®. The continuous part of apply the results obtained in the preceding sections.
the distribution, whose width is proportional i@, gets very
small and contains few eigenvalues, so its shape becomes

D. Comparisons

A. Mixing rate
very irregular and skewed to the negative sftteretain the g _ _ _
vanishing of the first mometThis picture is very similarto A random walk on a graph is defined as a Markov chain
what can be seen in Fig(3 of Ref. [4]. where the probability of jumping from vertéxo vertexj is

If p is not small, the accumulation point is clearly sepa-1/d; if they are connected and O otherwifk6]. Several
rated from the Frobenius-Perron eigenvalue. Besidesan ~ properties of random walks can be related to the spectrum of
be close to/N1y, thus including enough eigenvalues to take aa graph. For every timethere will be a different probability
shape close to the semicircle. This shape should also B&(j) of finding the walker on a sitg. A stationary distribu-
skewed. This picture is very similar to what can be seen irfion is defined by the requirement thag=P;,, for t>T, for
Fig. 3(c) of Ref. [4]. someT. #(j)=d;/2M is a stationary distribution, and for

It is also similar to what was found in Reff22]. In the  regular graphs it is unique. It can be shown that, regardless
graphs considered in that article links addedto a sparse of their initial state, all the walks tend to this distribution,
substrate(i.e., they are notewired). The dense version of provided the graph is connected and not bipartite.
this corresponds to taking =1 in our model. Even though it When the walk has reached the stationary distribution it
is the spectrum of the Laplacian matrix that is studied, théhas essentially lost all memory of its initial stater distri-
results can be translated very easily to the spectrum of theution) and all the vertices are sampled with probability pro-
adjacency matrix, because for large sizes the graphs can Ipertional to their connectivity, which is useful for several
considered regular, in which case the eigenvalues of bothlgorithms. But how fast is the convergence to the stationary
matrices can be related by the formafa=k—\A. It is found  distribution? One of the possible measures of this isntibe
that two peaks appear. The closest to the Perron-Frobeniirg rate, defined as
eigenvalue is separated from it by a pseudo@ap, an in-
terval where there are eigenvalues, but very few of them w=limsup ma>4pij - dj/M|1’t. (44)

This peak is found to be “in quantitative agreement with the toe 1
ring spectrum” and can be related to the accumulation point |t can be showr{16] that u=\}, the largest nontrivial

mentioned above. The other peak, which is very irregular fogjgenvalue of the normal matrix. Using E¢82) and(4) we
a small number of shortcuts, can be related to the continuousptain

part of the spectrum found in DPRG's.
sin(my)

M:)\’Cl:(m‘pz)
V. SOME APPLICATIONS

It is interesting to notice that the average distance and the _ [ -1 F(‘ y_p)} sin(y)
. o o . =|y-1+ex , (45)
clustering coefficient present qualitatively the same behavior 1-vy Ty

as that seen in sparse SWG’'s. We can see that for small

values of p; the graphs obtained have average distancewhere the last equality is valid for a dense SWG. This shows
which are close to those in random graphs, while retaining ghat for fixed and smally the mixing rate decreases almost
clustering coefficient close to the values present in circulantinearly with the disorder. Notice that the fact that the aver-
graphs. Naturally the range of values spannedtbg loga- age distance jumps to its minimal value @t 0" does not
rithm of) both quantities is much larger in SWG's. influence the mixing rate.
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FIG. 6. First ten eigenvalues of the discrete spectrum of the FIG. 7. Synchronization threshold for grapBg (y). The inset
adjacency matrix of a DPRG. The dashed lifle=—2yN(p; shows the critical fraction of links that must be shortcuts.
-p,) /3], which joins the first minima of all the eigenvalues, is

a reasonably accurate estimation of the smallest eigenvalue fc{ﬂsing the already mentioned relation between the adjacency
everyy. and Laplacian matrices, the synchronization condition for

DPRG's becomes
B. Synchronization of coupled oscillators

One of the most interesting processes that can take place B-1 < 2 + M
on a network is the collective dynamics of an array of PL—py 37 v

coupled oscillators. And perhaps the most striking collective  Notice that dense random graphs are always synchroniz-
state is that where all the identical oscillators gghchro-  gpe as\ /\g=1. As was done in Ref25] we have calcu-
nized Naturally, synchronization is not always possible; it |ated the synchronization threshold for a dense SWG for the
depends on the specific properties of the oscillators as well §s;5¢ of g system of oscillators wite 37.85. The results are
on the topology of the network. In Reff24] a very useful displayed in Fig. 7.

formalism was introduced to study the conditions for the e region below the curves gives the set of parameters

existence of a stable synchronized phase for a wide class gf; \yhich the system isot synchronizable. It is interesting
oscillators and couplings. The equations of motion forithe 5 notice that this implies that to obtain a synchronizable

(48

oscillator in the network are system it is not enough to have a macroscopic number of
N shortcuts. Also, the fact that in this regipns positive shows

X = F(X;) + 0, LiH(x)), (46)  that the onset of synchronization does not depend on the

=1 average distance because, as we have seen in Sec. Il A, for

; p>0 the average distance is the smallest possible. This sup-
'ports the idea that average distance alone is not a relevant
factor for the onset of synchronization. But in Rg#6] it has
been argued that synchronization seems to depend on the
combined effects of small average distance and uniformity of
the connectivity distribution. Yet our results show that it
AN < B, (470 must at least depend on some additional factors. For fixed

here L and AL ively. the | t and I tvalues ofy we have seen that the synchronization threshold
wherea, andAs are, respectively, the largest and smalleSts , . g - even though all graphS,(y) have the same con-
nontrivial eigenvalues of the Laplacia@ is a parameter

that depends only on the oscillators and its coupling, an@iesct:g\r/]g (flc\)lrzioonnectmns per nogend the same average

not on the topologys € [5,10Q for several chaotic oscilla-
tors [25].

Using Eq. (47) we can calculate the synchronizability
threshold for dense SWG's. For DPRG’s and sufficiently
large values ofN the smallest and largegexcluding the In this article we have studied some properties of dense
Frobenius-Perroneigenvalues of the adjacency matrix are partially random graphs that can be obtained by adding edges
located in the discrete part of the spectrum. The largesiith probability p, to a dense ordered substrate and then
nontrivial eigenvalue is alwaya;'=N[(p;-py)sin(my)]/m,  deleting the original edges of the substate with probability
but the index of the smallest eigenvalue dependsyon 1-p;. We have found that they show qualitatively the same
(see Fig. & An approximation to it is given by)\é behavior as the corresponding properties of sparse graphs, in
=-Ny(p1—p,)2/3m, which is accurate enough for our illus- particular small-world graphs. For the average distance we
trative purposes. find that, for any macroscopic number of shortcuts, it falls to

The synchronizability threshold is defined as the smallesits minimum possible valugin the infinite-size limij. We
value of p for which the system becomes synchronizable.show that the clustering coefficient decays slowly, thus al-

whereF governs the dynamics of each individual oscillato
H is an arbitrary output functiony gives the strength of the
coupling, and. is the Laplacian matrix of the network. It can
be shown[24] that for a system of this form, the condition
for the existence of a stable synchronous state reduces to

VI. CONCLUSIONS
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lowing for a range of parameters where the graphs have rela- Mmax i i-i i
tively large clustering and minimal average distance. A= > > (-1 E ( )( >
By counting cycles on the graph, we have obtained the M=~y ay 1= i p=0 I-p
distribution of eigenvalues of the adjacency matrix. We j—i
found that it consists of two parts: a discrete one where the ><g{i/2 -m+p-1+ y(— - p)} (A2)
eigenvalues, of ordeN, are simply rescalings of the corre- 2
sponding eigenvalues of the substrate and a continuous part
given by a semicircle distribution whose width is of ordét Max  J=i-1 i
and is proportional to the disorder. It is interesting to notice B= > X (-1 E ( )( )
that a similar form of the spectrum has been obtaif#g M="Mpay 1=0 -P
for matrices that are the sum of a stochastic matrix and a j-
block matrix. The block matrix is composed kfblocks of Xglil2-m+p-1+ v(— - p) (A3)

size proportional tdN where all off-diagonal components are
equal. The spectrum obtained consists of a semicircle distri- Notice that, to avoid overloading the notation, we extend
bution of width proportional to/N and a discrete part con- the definition of the combinatorial numbers,
taining thek largest eigenvalue®f orderN). Notice that in
our case the discrete part contains a diverging number of a\ al
eigenvalues. b/ (a-b)!Db!
We have shown how the distribution found can be useful
to understand the distributions that arise in the numericafor b<a, to
study of the spectrum of sparse small-world graphs. In the
studies published so far two peaks appear and a pseudogap (a)

separates the bulk of the spectrum from the Frobenius Perron b =0
eigenvalue. Comparing with our results for small values of
the connectivity, one of the peaks can in principle be associfor b>a. By making the replacementp—j—i—p and
ated with large eigenvalues of the substrate, all rescaled by— j—i—I, and rearranging the sums, we obtain
the same valuédependent on the disordeand the other to
a continuous distribution of small width that is usually a Mmax  J=1 1P '
signature of disorder. A= X 2 (=T '( )(- )
We have applied our results to the calculation of the mix- M="Mmax P 1=0
ing rate of a random walk on the graph and to the calculation xgi—-v-p-l+yp)=A’"-B’, (A4)

of the synchronization threshold of a system of coupled os- _
cillators placed on the nodes of the graph. We have showwhereS® =32 (-1)!(2) is an operator and
that below and above the threshold there exist graphs with

the same average distance and the same connegtieitythe T T 2Mnay
same number of connections per vejteRreviously it has A=D1 Y gu+l+ywp-a), (A5)
been argued that a combination of these two factors was po om0
responsible for the onset of synchronizability. Our results
show that there must at least exist more quantities involved. 2Miay j-i :
B'=(-1)" 1)P 1
ACKNOWLEDGMENT =D n%o p% ) ( )E( )( )
| acknowledge support from the Centro Latinoamericano Xgv+1+yp-a). (AB)
de Fisica.
By manipulating the indices and reordering the sums, it is
APPENDIX not difficult to show thatB=B’. Using the definition of,
Here we sketch the calculation that leads to @&§). Al- ~ We can show thaffl +yp—a] <2mp,,. Thus
though we suspect that there must be a shorter path to Eq. S0 [ypeal
(25), we have not been able to find it. , O .
=) =CDX'XY Y (-mtyp-a)t
We begin by splitting the dominant term in E&@3), Pi b T me

into two parts:

=i

Mmax min(lj=i) /. . . i1 — ’ I=i a)i™t
e 3 sen s () )N S'zCy ()E_l( e

M=—Mnax |=0 p=0 p l-p/(j-D! i i [yp-al

. j—i NI—t - p—'( ) — o)L
xg{llz—m+p—l+7<%—p>]:(j_l)!(A+B), +p:[2a,y]( v 2 2 “m*yp-a)
(A1) (A7)

whereg(x)=x"16(x) and It is known [21] that
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a k—m+1
-1%l!Sn,a for0O<a<n, -1 p+1
2N {( | 0 o fora>n (A8) Bien= T( kB

k
and B; are the Bernoulli numbers. Using this and summing
where S(n,a) are the Stirling numbers of the second kind overl, we get

[21]. Using Eq.(A8) one sees that the term in the last line of -1 1\ j-i
Eq. (A7) vanishegbut notice that this can only happen for Al = (J B ) b (= 1)i 1 i , — -1k
i >0). Thus, expanding in powers of, we get kzl k % (= D S, )% (=)
j-i i i j-1 I (A10)
A=D1 D (- DH(I )E (yp— a) 1> mk. But Eq. (A8) shows that in Eq(A9) the sum overp
p IR k=0 m=1 vanishes folk>i-1. Thus, only one term survives, the one
(A9) with k=i—1. Using thaBy=1 andS(i,i)=i! we finally obtain
. . . -1
Bernoulli's expression for a sum of powel28] is = N/ P
Pi ~ A'=N ' All
S mk=3Kh, 1Y where oG- Y (ALD)
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